Assessing geoaccuracy of structure from motion point clouds from long- range image collections
نویسندگان
چکیده
Automatically extracted and accurate scene structure generated from airborne platforms is a goal of many applications in the photogrammetry, remote sensing, and computer vision fields. This structure has traditionally been extracted automatically through the structure-from-motion (SfM) workflows. Although this process is very powerful, the analysis of error in accuracy can prove difficult. Our work presents a method of analyzing the georegistration error from SfM derived point clouds that have been transformed to a fixed Earth-based coordinate system. The error analysis is performed using synthetic airborne imagery which provides absolute truth for the ray-surface intersection of every pixel in every image. Three methods of georegistration are assessed; (1) using global positioning system (GPS) camera centers, (2) using pose information directly from on-board navigational instrumentation, and (3) using a recently developed method that utilizes the forward projection function and SfM-derived camera pose estimates. It was found that the georegistration derived from GPS camera centers and the direct use of pose information from on-board navigational instruments is very sensitive to noise from both the SfM process and instrumentation. The georegistration transform computed using the forward projection function and the derived pose estimates prove to be far more robust to these errors. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.53.11.113112]
منابع مشابه
3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کاملPhotogrammetric Analysis of Historical Image Repositories for Virtual Reconstruction in the Field of Digital Humanities
Historical photographs contain high density of information and are of great importance as sources in humanities research. In addition to the semantic indexing of historical images based on metadata, it is also possible to reconstruct geometric information about the depicted objects or the camera position at the time of the recording by employing photogrammetric methods. The approach presented h...
متن کاملSegmentation and Recognition Using Structure from Motion Point Clouds
We propose an algorithm for semantic segmentation based on 3D point clouds derived from ego-motion. We motivate five simple cues designed to model specific patterns of motion and 3D world structure that vary with object category. We introduce features that project the 3D cues back to the 2D image plane while modeling spatial layout and context. A randomized decision forest combines many such fe...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملاصلاح حرکت در تصویربرداری اسپکت میوکارد با استفاده از مدلسازی منحنی چند جمله ای
Background and purpose: Patient motion during myocardial perfusion SPECT can produce artifacts in reconstructed images which might affect clinical diagnosis. This paper attempts to present a new approach for the detection and correction of cardiac motion utilizing the data obtained during the imaging process. Materials and methods: Our method quantifies motion through polynomial curves modelin...
متن کامل